Computers & Geosciences Vol. 16, No. 3, pp. 379-384, 1990
Printed in Great Britain. All rights reserved

0098-3004/90 $3.00 + 0.00
Copyright © 1990 Pergamon Press plc

SHORT NOTE

A FORTRAN 77 SUBROUTINE FOR DETERMINING THE FRACTIONAL
AREA OF RECTANGULAR GRID BLOCKS WITHIN A POLYGON

CrLayToN DEUTSCH
Computer Services, Placer Dome Inc., 1600-1055 Dunsmuir Street, Vancouver, B.C., Canada V7X [PI

(Received 21 July 1989; accepred 29 August 1989)

INTRODUCTION

This Short Note presents a subroutine that calculates
the fractional area of rectangular grid blocks that fall
with a polygon. One application of this routine is to
compute the average attribute of a polgon when the
attribute is defined for a block model.

DESCRIPTION OF THE ALGORITHM

A rectangular grid network can be described by
four parameters:
(1) ymx — the maximum y coordinate which cor-
responds to the upper boundary of the block
with y index equal to I.

(2) ysz — the size of the rectangular blocks in the
v coordinate direction.

(3) xmn — the minimum x coordinate which cor-
responds to the lower boundary of the block
with x index equal to 1.

(4) xsz — the size of the rectangular blocks in the
x coordinate direction.

With this description of a grid network the y index
increases with decreasing y and the x index increases
with increasing x. Any coordinate point must fall in
some block with a corresponding x and y index. The
indices arbitrarily can be large or small depending on
the coordinate, that is the y index is the integer por-
tion of (ymx — y)fvsz + 1 and the x index is the
integer portion of (x — xmm)/xsz + 1.

Figure 1 shows an example grid network, polygon,
and the corresponding grid blocks of interest. The
algorithm described here will determine what fraction
of each block in the area of interest falls within the
polygon. The polygon vertices may be ordered clock-
wise or counter-clockwise. The polygon should be
closed (i.e. the first and last point should be the same).

If there are np vertices defining the polygon there
arenp — 1 vectors defining the sides of the polygon (a
polygon must have at least three sides). The idea is to
traverse around the outside of the polygon and accu-

379

CAGED-H

mulate all the area of grid blocks to the right of the
vector. If the vector is pointing up (increasing y), then
the area is positive and if the vector is pointing down
(decreasing y) the area is accumulated as negative. Of
course, if the vector is parallel to the x axis then no
area is accumulated. Figure 2 shows an example of the
areas that are added/subtracted for one vector. After
completing the circuit around the polygon the inter-
section area of grid blocks within the polygon will be
known.

The accumulation of the area to the right of a
vector must be done in a number of swaths. If the
vector crosses either an x or a y block boundary a new
swath must be started. The different shaded areas on
Figure 2 demonstrate the swaths for one vector.
Special care is required when coding the algorithm to
handle the vertices which exactly match block boun-
daries.

The polygon boundaries may cross but the user
should note the following rules for accumulating the
fractional areas:

(1) An area enclosed by vertices ordered clockwise

will yield fractional blocks with positive areas.

(2) An area enclosed by vertices ordered counter-
clockwise will yield fractional blocks with
negative areas

(3) Any area that is enclosed more than once by
vertices ordered clockwise will be accounted
for twice (could yield blocks with an area
> 1.0).

(4) Any block that is enclosed more than once by
vertices ordered counter-clockwise also will be
accounted for twice (could yield blocks with an
area < —1.0).

(5) A block that has been enclosed both by clock-
wise and counter-clockwise vertices will have
the sum of the areas.

The coding of the algorithm presented here will in-
dicate whether there are both positive and negative

380 Short Note

10.0 (ymax)

o

o

A

80

50

Y

0o

060 10 20 30 40 80 8o 8o "o 0.0

70
—
-
X direction

Figure |. Example grid network, polygon, and corresponding grid blocks of interest.

X block Index

a0

Y block index
“w

30
20 a0 w0 a0 L1 70 o

Figure 2. Example of areas that are added/subtracted for one vector.

Short Note

blocks and whether there are blocks that have been
enclosed more than once.

SUBROUTINE DESCRIPTION

The subroutine is written in standard FORTRAN
77 and does not require any external subroutines or
functions. The calling arguments are as follows:

(1) ymx — the maximum y coordinate (as des-
cribed).

(2) ysz — the size of the rectangular blocks in the
» coordinate direction.

(3) xmn — the minimum x coordinate (as des-
cribed).

(4) x5z — the size of the rectangular blocks in the
x coordinate direction.

(5) np — the number of vertices describing the
polygon.

(6) xp — a real (floating point) array containing
the x coordinate of each vertex.

(7) yp — a real (floating point) array containing
the y coordinate of each vertex.

(8) maxgh — this parameter is used to make sure
that the size of output arrays ix, iy, and fwb
are not exceeded.

Parameters 9-13 are output from the subroutine:

(9) ngh — the number of grid blocks that are in
the area of interest (rectangular bounds of the
polygon). The following three arrays will have
ngb values (ngh < maxgbh).

(10) ix — an integer array of the x block indices
for the ngb blocks of interest.

(11) iy — an integer array of the y block indices for
the ngb blocks of interest.

(12) fwb — a real (floating point) array of the
fractional area within the ngh blocks of in-
terest.

(13) irt — an error return code: = | the number
of grid blocks in the area of interest exceeds
maxgh — ERROR SITUATION! = 2 all
fractional areas are positive (clockwise) and
<1 (nonoverlapping); = 3 all fractional
areas are negative (counter-clockwise) and
> —1 (nonoverlapping); = 4 fraction areas
are positive and negative but nonoverlap-
ping; = 5 fractional areas outside of [-1.0,
1.0] exist (overlapping).

After calling the subroutine with a description of a
polygon the five output variables completely describe
the grid blocks within the polygon. Negative areas
indicate that the polygon was ordered counter-clock-
wise (take the absolute value of the area). If a grid
block is completely within the polygon then fiwb(i)
will be 1.0, half in the polygon then fwb(i) will be 0.5,
and completely outside the polygon then fivh (i) will

381

Table 1. Fractional areas of grid blocks within polygon
shown on Figure |

i ix(i) (i) Jwb(i) i ix(i) ip(i) fwh(i)
P =3 3 0.000 16 6 5 0.575
2 4 3 0.000 | 3 TR 5 0.813
<L 3 0.000 18 8 5 0.354
4 6 3 0.159 19 3 6 0.044
5 & 3 0.300 20 4 6 0.752
6 8 3 0.201 2105 6 0.955
T 4 0000 22 6 6 0.250
8 4 4 0.000 23 7 6 0.021
93 4 0.163 24 8 6 0.055

10 6 L) 0.934 25 3 7 0.181

I 7 4 1.000 26 4 7 0.067

2 8 4 0546 27 5 7 0.067

13 3 5 0000 28 6 7 0.248

14 4 5 0094 29 7 7 0.000

15 2§ 5 0.875 30 8 7 0.000

be 0.0. The block location of i (where i is between |
and ngb) is given by the x and y indices ix (i) and iy
(7). The total area enclosed by the polygon is given by
the sum of fwbh(i) from i = 1 to i = ngb.

The subroutine assumes the polygon is closed.
Erroneous results will be obtained for polygons that
are not closed. Depending on xp and yp the indices of
the blocks in the area of interest may be zero, nega-
tive, or large. A quick check in ix (1), iy (1), and ix
(ngb), iy (ngb) will indicate the bounds of the polygon.
A number of comments in the code indicate places to
improve the efficiency of the subroutine.

EXAMPLE

The polygon shown in Figure 1 can be described
by np = 9 with the following coordinates for xp and

yp:

i xp(i) i)
1 22 34
2 5.6 7.3
3 i | 7.3
4 7.2 4.7
) 5.7 5.7
6 5.0 5.0
7 58 34
8 4.0 4.2
9 22 34

The subroutine farea will return ngh = 30, irt = 2,
and the values shown in Table 1. A mathematical
check of the areas calculated by farea confirms that
the result is correct.

Acknowledgment—The author would like to thank the man-
agement of Placer Dome Inc. for allowing publication of this
subroutine,

Appendix overleaf

382

NOOOO0OOO00

a0

Short Note

APPENDIX
Program Listing

subroutine farea(ymx,ysz,xmn,xsz,np,Xp, yp,maxgb,ngb,ix, iy, fwb,irt)

Fractional Area of Grid Blocks within Polygons

HRE A AR AR AR AR NN IR AR AR I AT AN A AT A T AN R ®

This subroutine computes the intersection of a grid block network with
a polygon. The fraction of each grid block within the polygon is
computed exactly.

Y origin of the grid system. This is the

maximum (upper boundary) of the Y direction

size of the grid blocks in the Y direction
X origin of the grid system. This is the

minimum (left hand boundary) of the X direction

INPUT: ymx the
ysz the
xmn the
X8z the
np the
xp() the
yp() the
maxgb the

OUTPUT: ngb
ix(
iy (

fwb()

irt

NOUTES:

)
)

size of the grid blocks in the X direction
number of points defining the polygon
array of the X coordinates of the vertices
array of the Y coordinates of the vertices
maximum allowable number of elements that

output arrays ix,iy, fwb are dimensioned for.

the
the
the
the

number of grid blocks in the area of interest
X index of the blocks in the area of interest
Y index of the blocks in the area of interest
fraction of the grid block within the polygon

an error return code:

-1
-2
=3
-4

=5

the number of grid blocks in the area of
interest exceeds maxgb - ERROR SITUATION!

all fractional areas are positive (clockwise)
and less than 1 (non-overlapping)

all fractional areas are negative (counter-
clockwise) and greater than -1 (non-overlapping)
fractional areas are positive and negative

but non-overlapping (-1.0,1)]

fractional areas outside of [-1.0,1.0] exist

1. The grid network is defined by the maximum ¥ coordinate and
the minimum X coordinate. The X index increases with
increasing X and the Y index increases with decresing Y.

2. This routine does not check for negative grid block indices.

3. The polygon must be closed. A modification should be added
to the code if non-closed polygons are to be considered.

4, The parameter EPSLON is used to test for eguality on block
boundaries and to avoid very small denominators.

real
intege

x

logical

Determine th

ypmin
ypmax
xpmin
Xpmax

parameter (EPSLON=0,00001)

xp(*) ,yp(*),fwb (*)
ix(*),iy(*)
pos,neg, cne

extent

yp(l)
yp(1)
xp (1)
xp (1)

do 1 i=2,np-1
if (xp(i) .1t .xpmin) xpmin = xp (i)
if(xp(i).gt.xpmax) xpmax = xp (i)
if(yp(i).1lt.ypmin) ypmin = yp(i)
if(yp(i) .gt.ypmax) ypmax = yp(i)

1 continue

nlx = int(((xpmin-xmn)/xsz))
nux = int (((xpmax-xmn)/xsz))
nly = int(((ymx-ypmin)/ysz))
nuy = int(((ymx-ypmax)/ysz))

of the grid area covered by the polygon:

+ 4+ 4+
=

ngb = (pux = nlx + 1) * (nly = nuy + 1)

if (ngb.gt.maxgb) then

write(*,*) 'ERROR: require larger arrays for FAREA’
write(*,*) * require: ‘,ngb,’available: ’,maxgb

Short Note 383

irt = 1
return
endif
c
¢ Initialize the grid area used, NOTE: The parameters nlx,nux,nly,nuy
¢ completely define the arrays ix and iy. One place where storage
¢ space could be saved is to pass nlx,nux,nly,nuy to the calling
¢ program and perform the following indexing in the calling program.
c
igb = 0
do 2 j=nuy,nly
do 3 i=nlx,nux
igb = igb + 1
ix(igb) = 1
iy(igb) =
fwb (igb) = 0.0
3 continue
2 continue
¢

¢ MAIN LOOP over the "np" vectors:
c
do 4 ip=1,np-1
c
¢ Determine whether going up or down (relative to Y direction):
c
if ((yp(ip+1l)-yp(ip)).ge.0.0) then
sign = .0
xpt = xp(ip)
ypt = yp(ip)

xe = xp(ip+l)
ye = yp(ip+l)
else
sign = =-1.0
xpt = xp(ip+l)
ypt = yp(ip+l)
xe = xp(ip)
ye = yp(ip)
endif

c
c SECONDARY LOOP along vector (if no Y change then go to next vector):
c
5 continue
if ((abs (ye-ypt)) .1t .EPSLON) go to 4

c try to go up to next ¥ grid line without passing end of vector:
c
ypt2 = ymx - real (int ((ymx-ypt)/ysz-EPSLON))*ysz
if (ypt2.gt.ye) ypt2 = ye
xpt2 = xpt + ((ypt2-ypt)/(ye-ypt))* (xe-xpt)
e
c make sure that an X grid line is not crossed:
c
isp = int ((xpt -xmn)/xsz+EPSLON) + 1
isn = int((xpt -xmn)/xsz-EPSLON) + 1
iep = int ((xpt2-xmn)/xsz+EPSLON) + 1
ien = int ((xpt2-xmn)/xsz-EPSLON) + 1
if ((xpt.lt.xpt2.and.isp.ne.ien).or.
- (xpt.gt.xpt2.and.isn.ne.iep)) then
if (xpt.lt.xpt2) xpt2 = xmn+real((isp))*xsz
if (xpt.gt.xpt2) xpt2 = xmn+real((isn-1))*xsz
ypt2 = ypt + ((xpt2-xpt)/(xe-xpt))*(ye-ypt)
endif
c
c add (or subtract) partial block contribution to total grade:
c
xmd = 0.5%(xpt+xpt2)
xcor = ((xmn+real (int ((xmd+xsz-xmn)/xsz))*xsz)-xmd) /xsz
ycor = abs((ypt2-ypt)/ysz)
area = sign*xcor*ycor
ixbl = int ((xmd-xmn)/xsz) + 1
iybl = int ((ymx-ypt)/ysz-EPSLON) + 1
ind = (ixbl-nlx+l) + (iybl-nuy)*(nux-nlx+1l)
fwb(ind) = fwb(ind) + area
c
c add (or subtract) full blocks up to eastern boundary:
c

if(ixbl.lt.nux) then
area = sign*ycor
do 6 =1, (nux-ixbl)
xmd = xmd + xsz
ixbl = int((xmd-xmn)/xsz) + 1
iybl = int((ymx-ypt)/ysz-EPSLON) + 1

384

0

c

Short Note

ind = (ixbl-nlx+l) + (iybl-nuy)* (nux-nlx+1)
fwb(ind) = fwb(ind) + area
continue
endif

if current vector is not finished - continue to step along it:

if (abs (xpt2-xe) .gt .EPSLON.or.abs (ypt2-ye) .gt .EPSLON) then
Xpt = xpt2
ypt = ypt2
go to 5

endif

¢ END MAIN LOOP over the "np" vectors:

c

noaooon

continue

Determine the return code, NOTE: for specific applications the user
may not care that the polygon is clockwise or counter-clockwise in
which case one could take the absolute value of fwb here and also
ensure that the fwb(i) is between 0.0 and 1.0:

pos = .false.
neg = .false,.
one = .false.
do 7 1 = 1,ngb

if(fwb(1i).gt.0.0) pos = .true,
if(fwb(i).1t.0.0) neg = .true.
if (abs(fwb(i)).gt.1.0) one = .true.
continue
irt = 2
if (neq) irt = 3
if(neg.and.pos) irt = 4
if (one) irt = 5

return
end

